Diplomarbeiten

Die Forschungsgruppe AIST bietet Studenten die Möglichkeit sich mit ihren Diplomarbeiten (Bachelor, Master) im Rahmen von Forschungsprojekten praktisch auseinander zu setzen und sich so mit dem jeweiligen Themengebiet intensiver zu beschäftigen. Die praktische Betreuung erfolgt dabei durch einen wissenschaftlichen Mitarbeiter (zusätzlich zum Begutachter seitens der Fachhochschule).

2020

Johann Aichberger wrote his master thesis on „Mining Software Repositories for the Effects of Design Patterns on Software Quality“.

Abstract

Design patterns are reusable solutions for commonly occurring problems in software de-sign. First described in 1994 by theGang of Four, they have gained widespread adoptionin many areas of software development throughout the years. Furthermore, design pat-terns have also garnered an active research community around them, which investigatesthe effects that design patterns have on different software quality attributes. However,a common shortcoming of existing studies is that they only analyze the quality effectsof design patterns on a relatively small scale, covering no more than a few hundredprojects per case study. This calls into question how generalizable the results of thesesmall-scale case studies are.Pursuing more generalizable results, this thesis conducts a much larger-scale analysisof the quality effects of design patterns. To accomplish this, software metric and designpattern data for 90,000 projects from theMaven Centralrepository is collected usingthe metrics calculation toolCKJM extendedand the design pattern detection toolSSA.Correlations between design patterns and software quality attributes are then analyzedusing software metrics as proxies for software quality by following the methodologydescribed by the QMOOD quality model. The results of the analysis suggest that designpatterns are positively correlated withfunctionalityandreusability, but negatively corre-lated withunderstandability, which is consistent with the results of existing smaller-scalecase studies.

Eva-Maria Spitzer hat im Rahmen des Kimiku Projekts an ihrer Masterarbeit zum Thema „An Exploratory Approach for Finding Similarities Within Heterogeneous Data Sets of Small and Medium-Sized Enterprises“ gearbeitet.

Abstrakt

Kundenbindungsprogramme sind ein wichtiges Hilfsmittel für Unternehmen, um die Bedürfnisse ihrer Kundinnen und Kunden besser wahrzunehmen und dadurch geeignete Maßnahmen zur Steigerung der Zufriedenheit ergreifen zu können. Für die erfolgreiche Umsetzung solcher Programme werden detaillierte Analysen benötigt, die eine große Menge von Kundendaten voraussetzen. Viele Klein- und Mittelunternehmen haben nur wenig Daten und können folglich nur einen kleinen Datensatz für Analysen verwenden, was zu schlechteren Modellen und ungenaueren Ergebnissen führen kann.

Eine Lösung ist es, Unternehmen zu finden, die in ihren Datencharakteristiken ähnlich sind. Wenn eines der sich ähnlichen Unternehmen über genügend Daten verfügt, um ein leistungsfähiges Modell zu erstellen, kann dieses auf die Daten eines ähnlichen Unternehmens mit weniger Kundendaten angewendet werden.

Die Arbeit beschreibt einen möglichen Ansatz zur Erkennung von ähnlichen Unternehmen sowie die Identifikation von Features und Algorithmen, die bei den jeweiligen Datensätzen zu guten Ergebnissen führen. Als konkreter Anwendungsfall werden Daten von sechs Klein- und Mittelunternehmen
verwendet, die durch eine Kundenbindungsapp von einem österreichischen Software-Unternehmen aufgezeichnet wurden.

Für die Identifikation ähnlicher Unternehmen wurden Datencharakteristiken extrahiert. Diese Charakteristiken hängen mit dem spezifischen Use Case zusammen und zielen darauf ab, die Daten der jeweiligen Unternehmen bestmöglich zu repräsentieren. Zur Eruierung jener Features und Algorithmen (z.B.: Random Forest, Support Vector Regression) die in Kombination mit den
unterschiedlichen Datensätzen zu guten Ergebnissen führen wurde für jede Feature/Algorithmus-Kombination ein Regressionsmodell trainiert und evaluiert. Die jeweiligen Kombinationen der Features und Algorithmen wurden gemeinsam mit den Datencharakteristiken der Unternehmen mit Hilfe von Agglomerative Hierarchical Clustering gruppiert. Zur Evaluierung der Leistung der jeweiligen Kombinationen wurde die aus den Durchläufen der Regressionsmodellen berechnete Fehlermetrik verwendet.

Diese Arbeit zeigt, dass es einige Herausforderungen gibt, Unternehmen mit ähnlichen Datensätzen sowie Feature- und Algorithmus Kombinationen zu finden, die für bestimmte Datensätze am besten funktionieren. Trotz der geringen Anzahl an verfügbaren Daten konnte gezeigt werden, dass es möglich ist, auf Basis von Datencharakteristiken ähnliche Unternehmen zu finden. Die Ergebnisse lassen zwar nicht auf Features und Algorithmen, die die Regressionsaufgabe unternehmensübergreifend beeinflussen, rückschließen, jedoch konnten Einflüsse von Features auf bestimmte Datensätze beobachtet werden. Die Ergebnisse dieser Arbeit erschließen weitere Forschungsmöglichkeiten, wie z.B. detaillierte Analysen spezifischer Features oder die Vorhersage des Fehlers einer Regressionsaufgabe wenn bestimmte Features, Algorithmen und Datencharakteristiken verwendet werden. Zusammenfassend lässt sich feststellen, dass diese Arbeit die Grundbausteine für die Anwendung eines trainierten Modells auf andere Datensätze legt.

Sophie Bauernfeind arbeitete während ihres Sommerpraktikums am Projekt Oppa im Kontext ihrer Bachelorarbeit – mit dem Titel „FHIR-Tooling: Ein interaktiver Editor zum Entwerfen und Schreiben von FHIR-Shorthand-Spezifikationen“ – an einer Tool-Unterstützung zur Erstellung von FHIR-Spezifikationen in Microsoft Visual Studio Code.

Clara Kainz hat im Zuge ihres Sommerpraktikums im Projekt Flink an ihrer Bachelorarbeit gearbeitet. Dabei hat sie sich mit Verfahren zur Datenaugmentierung für Trainingsdatensätze im Kontext von Deep Learning mit dem Fußballsimulationsspiel FIFA20 beschäftigt.

2019

David Baumgartner hat im Zuge des Projekts EDEN an seiner Masterarbeit gearbeitet.

Abstrakt

Für Millionen von Menschen sind Aufzüge jeden Tag ein unverzichtbarer Bestandteil. Die meisten Menschen verlassen sich darauf, dass Aufzüge 24/7 im Jahr funktionieren. Aber was ist mit einem menschlichen Versagen im Aufzug, wie einem Herzinfarkt? Es gibt solche reale Fälle die hätten verhindert werden können, wenn ein autonomes System Menschen mit einem Notfall vor Ort entdeckt hätte. Die automatische Notfallerkennung in Aufzügen ist von Interesse, da sie genau das Szenario menschlichen Versagens trifft. Das Projekt, in dem diese Arbeit realisiert wird, besteht aus einem Client, der autonom im Aufzug läuft und den Notzustand darin verfolgt, sowie einem optimierenden Hintergrunddienst. Diese Arbeit schlägt ein System als Prototyp vor, das darauf abzielt, die Selbstoptimierung der Klassifizierung im Aufzugssystem als  Hintergrunddienst zu lösen. Für ein solches System müssen mehrere Probleme bearbeitet werden. Erstens, wie man möglicherweise die richtige Klasse für neu ankommende Daten aus einem echten Notfall oder einer Aufnahme extrahiert. Zweitens, welche Parametereinstellung für einen Klassifikator die effizienteste ist und wann ein Klassifikator vollständig getestet ist. Dieser kann dann auf dem laufenden Client im Aufzug eingesetzt werden. Eine zusätzliche Herausforderung für dieses Projekt besteht darin, konform gegenüber der Datenschutz-Grundverordnung (DSGVO) zu sein und keine Personen zu überwachen, die die Aufzüge benutzen. Das Ziel dieser Arbeit ist es einen Prototyp zu entwickeln, der auf die Lösung der Hauptprobleme eingeht. Ein Beispiel dafür ist die Dynamik, mit der neue Klassen während der Laufzeit gefunden werden, damit nicht zu große Ressourcen für die Erstellung eines neuen flachen Klassifikators verschwendet werden. Die Ergebnisse zeigen, basierend auf zwei verschiedenen Datensätzen, die Zeitspanne, die benötigt wird, um eine bessere Lösung zu finden, als das manuelle Testen nach einer guten Lösung. Eines der wichtigsten Ergebnisse ist die Gesamtstruktur der Lösung, die modernste Technologien in einem System kombiniert und die eine Lösung zeigt, welche in Zukunft leicht erweiterbar ist.

Rainer Meindl hat im Zuge des Projekts EDEN an seiner Masterarbeit gearbeitet.

Abstrakt

Das Erkennen und Reagieren auf Notsituationen im täglichen Leben war in den letzten Jahren immer ein Forschungsthema, konzentrierte sich aber immer entweder auf Personen, die für Notsituationen anfällig sind, wie z.B. ältere Menschen, oder auf breiterer Ebene, wie z.B. das Erkennen von Aktivitäten in großen Menschenmengen oder Fußgängern. Aufgrund der schnell zunehmenden Verfügbarkeit und Leistung externer Sensoren sowie der Einführung zuverlässigerer Daten sollte die Notfallerkennung und -verwaltung auch in engen Räumen, wie z.B. Aufzügen, möglich sein.Zusammen mit VIEW – Elevator als Domänen Experten und Partner der FH-OOE AIST Forschungsgruppe konzentriert sich diese Arbeit auf die Einführung von Aktivitätserkennung und, darauf aufbauend Notfallerkennung im Aufzugsbereich. Es baut auf einem zustandslosen System zur Objekt- und Personenerkennung auf, das im Rahmendes Forschungsprojektes implementiert wurde, und verwendet die erzeugten zustandslosen Daten des Systems. Aber anstatt stochastische Methoden oder künstliche Intelligenz zu verwenden, zielt diese Arbeit darauf ab, das Problem der Notfalldetektion durch die Einführung einer generischen zustandsorientierten Komponente zu lösen, da sie einfache,deterministische und vom Menschen lesbare Aktionen und Ergebnisse ermöglicht. Es vergleicht mehrere Zustandsmaschinen-Designs und schlägt schließlich eine neue Zustandsmaschinen-Definition vor, die auf farbigen Petrinetzen aufbaut, dem dynamischen, nicht-deterministischen Petrinetz (DNPN). Basierend auf dem DNPN wird eine Zustandsmaschine entworfen, die die Verfolgung des Aufzugszustands und aller seiner Insassen, einschließlich Personen und ihrer Objekte, ermöglicht. Darüber hinaus wird ein Hilfssystem entworfen, das die Systembereitschaft, die Verbindung mit der Zustandsma-schine und die weitere Auswertung des aktuellen Aufzugsszenarios und gegebenenfalls die Vorhersage eines möglichen Notfalls ermöglicht.Die Handhabung und Bewertung dieser Notfallszenarien wird in einem Prototypdargestellt, der im Rahmen des Forschungsprojekts implementiert wird. Es implementiert das DNPN und Datenstrukturen, um die zustandslosen Daten für den Zustandautomaten zu aggregieren. Letztendlich wird der Prototyp als Ganzes verwendet, um die Zustandsmaschine zu bewerten, indem zuvor generierte Testdaten zugeführt werden, die ein festes Skript und Ergebnis haben. Am Ende werden die Ergebnisse der Zustandsmaschine diskutiert, wobei auf das erwartete Ergebnis verwiesen wird, das im Skript definiert ist, sowie Vorschläge für die weitere Arbeit zur Verbesserung der DNPN-Definition und des gesamten Systems.

Andreas Pointner beschäftigte sich im Rahmen des Projektes PASS mit ‚Graphbasierte Transformationen für modellgetriebene Softwareentwicklung‘.

Abstrakt

Die Modelltransformation ist ein wesentlicher Teil der modernen Softwareentwicklung. Gerade im Bereich des Model-Driven Development (MDD) gibt es einige spannende neue Themen und Inhalte. Diese Arbeit legt den Fokus dabei auf die Entwicklung eines graphbasierten Modelltransformationsframeworks. Im Zuge dieser Arbeit werden dafür die Grundlagen der Modelltransformation beschrieben. Darunter fällt auch die Definition von Modellen, Metamodellen, aber auch welche Arten von Transformationen existieren. Darüber hinaus werden einige theoretische Konzepte wie Triple Graph Grammar (TGG) analysiert, aber auch detailliert auf bestehende Frameworks wie Atlas Transformation Language (ATL) und Epsilon Transformation Language (ETL) eingegangen. Zusätzlich dazu wird ein Konzept vorgestellt, wie die Graphdatenbank Neo4J zur Modelltransformation verwendet werden kann, beziehungsweise wie sie sich mit einem Modelltransformationsframework verbinden lässt. Das Kernthema dieser Arbeit ist dabei das Design und die Implementierung der Graphtransformationsbibliothek. Dabei wird auf die entwickelten Konzepte und verwendeten Entwurfsmuster eingegangen, sowie die Analogien zu den zuvor analysierten Frameworks aufgezeigt. Diese Bibliothek wird dann anhand zweier Beispiele, der Transformation eines Graphen in ein XML Modell und der Transformation eines 2D Bauplanes in ein 3D Modell, welche im Zuge einer Forschungsarbeit entstand, evaluiert. Abschließend wird auf die jeweiligen Vor- und Nachteile der Bibliothek eingegangen und ein Ausblick für zukünftige Entwicklungen gegeben. Dabei zeigt sich, dass vor allem die Unabhängigkeit zu anderen Technologien, sowie die lose Koppelung der Komponenten ein wesentlicher Vorteil der Bibliothek ist. Es zeigt sich aber auch, dass große Modelltransformationsframeworks wesentlich mehr Funktionalität zur Transformation bieten, diese aber häufig auch mit großem Overhead verbunden sind.
 

Christoph Praschl beschäftigte sich im Rahmen des Forschungsprojektes PASS mit der ‚Erkennung von Informationsverlust in der Modelltransformation‘.

Abstrakt

Der Modellbegriff bezeichnet eine vereinfachte Darstellung von Gegenständen, Abläufen oder anderen Subjekten und wird in der Disziplin der Softwareentwicklung zur Repräsentation eines abgekürzten Realitätsausschnittes verwendet. Die Modelltransformation erweitert diesen Bereich um den Informationstransfer zwischen mehreren Modellen und ist ein wesentlicher Bestandteil der modernen Softwareentwicklung, vor allem im Bereich der modellgetriebenen Softwareentwicklung. Die vorliegende These befasst sich mit verschiedenen Möglichkeiten zur Erkennung von Informationsverlust im Bereich der Modelltransformation. Dies ist nötig, um sicherstellen zu können, dass Informationen von einem Quell-, richtig in ein Zielmodell übertragen werden, sowie zur Detektion von semantischen Unterschieden zwischen betroffenen Modellen. Im Vordergrund dieser Abhandlung stehen die beiden Fragestellungen „Wo tritt in einem Modell bei der Überführung in ein anderes Modell ein Informationsverlust auf?“ und „Wurde die Semantik eines Datensatzes durch die Transformation verändert?“. Der ersten der beiden Forschungsfragen obliegt die Bewahrung von Informationen, welche aus dem Quell- in das Zielmodell übertragen werden. Demnach sollen Daten nicht korrumpieren beziehungsweise auch an die korrekte Stelle im Zielmodell gelangen. Demgegenüber fokussiert sich die zweite Problemstellung auf die Erkennung von Modellcharakteristika in welchen sich die betroffenen Modelle unterscheiden. Dabei handelt es sich um Informationen, welche im Ziel- aber nicht im Quellmodell existieren. Zur Beantwortung der beiden Fragestellungen werden zunächst Grundlagen der Modellierung, sowie theoretische Konzepte und Verfahren aus dem Bereich der Modelltransformation und -verifikation vorgestellt. Im Weiteren werden zwei graphbasierte Implementierungen präsentiert, welche es erlauben, von Informationsverlust betroffene Modellcharakteristika zu identifizieren. Dabei handelt es sich namentlich um die graphbasierte Einschränkungsauflösung und ein Verfahren zur Erkennung von Knotenmustern mithilfe einer Neo4j Graphdatenbank. Zusätzlich wird die Verifikationskomponente des verwendeten Transformationsframeworks erläutert, welche rudimentäre Modellprüfungen ermöglicht. Abschließend werden die vorgestellten, praktischen Verfahren anhand zweier Beispiele evaluiert. Diese Evaluierung stellt die Verifikationsmethoden gegenüber und resultiert in verschiedenen Vor- und Nachteilen, zeigt dabei aber auch die grundlegende Anwendbarkeit der Implementierungen zur Erkennung von Informationsverlust.
 

Ignace Jordens hat im Zuge seines Eurasmus Auslandspraktikums im Projekt EDEN an seiner Bachelorarbeit gearbeitet.

Abstrakt

EDEN steht für Emergency Detection in Elevator Networks und ist ein Projekt der AIST Forschungsgruppe an der Fachhochschule Oberösterreich, zielt auf den Einsatz von Sensoren und Kameras Notfälle in Aufzügen automatisch zu erkennen, sie zu bewerten, in einen Kontext zu setzen und geeignete Maßnahmen. Diese Bachelorarbeit befasst sich mit der Klassifizierung des Status einer Aufzugstür. Um bestimmte Notfälle richtig klassifizieren zu können, ist es von entscheidender Bedeutung, dass das Klassifizierungssystem kennt alle beteiligten Parameter. Eine bestimmte Situation kann unterschiedlich interpretiert werden, wenn alle Parameter berücksichtigt werden. Der aktuelle Zustand der Tür ist in diesem Fall ein sehr wichtiger Parameter. Das EDEN-Projekt verwendet eine Intel RealSense D435-Kamera als Gerät zur Erfassung von Bildern und Tiefeninformationen. Diese Bilder und die entsprechenden Tiefeninformationen werden vom Projekt analysiert, das in C++ geschrieben ist und das OpenCV-Framework für Computer Vision verwendet. In einem ersten Teil dieser Arbeit wird die Verwendung der von der Kamera bereitgestellten Tiefen- und RGB-Informationen zur Erkennung des Status einer Aufzugstür untersucht. In der Forschung werden die verschiedenen möglichen Ansätze diskutiert. Die praktikabelsten Ansätze werden in einem Proof-of-Concept ausgearbeitet. Der erste Schritt bei der Erkennung des Türstatus ist die Lokalisierung der Tür selbst unter Verwendung von Tiefen- und RGB-Informationen. Danach folgt die Extraktion des Bodens, die durch den Einsatz von Kantenerkennungs- und Extraktionstechniken erreicht wird. Mit der Lokalisierung der Tür und des Fußbodens, die der Anwendung bekannt sind, kann der Status der Tür bestimmt werden. Um diesen Status korrekt zu klassifizieren, konzentriert sich die Forschung auf verschiedene Methoden zur Erkennung des Status und Strategien zur Reduzierung von Lärmstörungen, die entweder durch das Aufnahmegerät oder durch Objekte, die die Sicht auf die Tür blockieren, verursacht werden. Der zweite Teil der Arbeit konzentriert sich auf das Testen der Fähigkeiten der Intel RealSense D435 Kamera, genauer gesagt auf die Genauigkeit der Tiefeninformationen, die sie liefern kann. Um bestimmten ISO-Normen zu entsprechen, darf eine Aufzugskabine keinen Höhenunterschied von mehr als 20 Millimetern aufweisen, verglichen mit der äußeren Etage. Es wird untersucht, ob die Kamera D435 eine so geringe Höhe erkennen kann. Unterschied bei gleichzeitiger Beibehaltung einer visuellen Übersicht über die gesamte Aufzugskabine, so dass die Anwendung noch immer auftretende Notfälle erkennen.

Simone Sandler hat ihre Bachelorarbeit im Rahmen des MoxUP Projekts erstellt.

Abstrakt

Diese Bachelorarbeit befasst sich mit der Transformation von Gebäudemodellen. Diese Modelle sollen für den 3D Druck vorbereitet werden. Als Grundlage für die Transformation dienen OBJ-Dateien die dem sogenannten “o3D” Standard entsprechen. Dieser Standard erleichtert die programmatische Verarbeitung der 3D Dateien. Verwendet und erstellt wurde dieser von der Firma moxVR, einem Start-Up mit Sitz in Linz. Dieses Unternehmen bietet ihren Kunden an, ihr zukünftiges Zuhause 3D drucken zu lassen. Dadurch wird es erleichtert sich Wohnen visuell vorzustellen. Die 3D-Dateien kommen dabei vom Architekten des Gebäudes. Um die Dateien 3D drucken zu können, müssen zunächst alle Möbel aus dem Gebäude entfernt, sowie Türen und Fenster mit Öffnungen ersetzt werden. Anschließend soll das Modell in die einzelnen Stockwerke unterteilt und mit Halteelementen versehen werden um einen Zusammenhalt des Modells zu ermöglichen. Schließlich muss es möglich sein, das Modell in eine gültige STL-Datei zu konvertieren, da diese für den 3D-Druck benötigt wird.

Diese Arbeit wurde von Jacqueline Schwebach im Rahmen ihrer Arbeit am REPO Projekt erstellt.

Abstrakt

Mit Einführung der elektronischen Gesundheitsakte in Österreich (ELGA) wurde bereits ein erster Schritt zu einer besseren Vernetzung verschiedenster Gesundheitsdiensteanbieter (GDA) getan. Sie trägt maßgeblich zur Verbesserung der Versorgungsqualität der PatientInnen und der österreichischen e-Health-Infrastruktur bei. Radiologische Befunde, ärztliche und pflegerische Entlassungsbriefe sowie die e-Medikation können bereits in der ELGA eingesehen werden. Die elektronische Gesundheitsakte wird schrittweise ausgebaut und kontinuierlich um neue Anwendungsfälle ergänzt.


Im Zuge des Berufspraktikums wird ein Prototyp weiterentwickelt, der die einrichtungsübergreifende Zusammenarbeit von RadiologInnen im niedergelassenen Bereich sowie in Krankenhäusern mithilfe der österreichischen e-Health-Infrastruktur erleichtern soll. Ebenfalls wird ein bereits abgeschlossenes Projekt für die Verwendung in anderen Projekten überarbeitet. Dabei sollen Code-Duplikate beseitigt und eine Dokumentation der Schnittstellen zur Verfügung gestellt werden.

2018

Anna Lackerbauer hat an ihrer Masterarbeit im Rahmen des kooperativen Forschungsprojekts eConsent am Centre for Global eHealth Innovation des University Health Network Toronto geforscht.

Abstrakt

Um Personen, die an einer Forschungsstudie teilnehmen oder sich einer medizinischen Behandlung unterziehen, zu schützen, ist es essenziell, vorab ihr informiertes Einverständnis (Informed Consent) einzuholen. Dies trägt dazu bei, der jeweiligen Person Entscheidungsfreiheit zu ermöglichen. Dabei handelt es sich um einen Prozess, der aus mehreren Schritten besteht. Zuerst muss genügend Information zur Verfügung gestellt werden, um eine bewanderte Entscheidung treffen zu können. Nachfolgend muss sichergestellt werden, dass die betroffene Person fähig ist, die Entscheidung zu treffen, und diese Entscheidung muss dokumentiert werden. Derzeitig wird dies oft im Zuge eines mündlichen Aufklärungsgespräches erledigt, welches teilweise durch Informationsbroschüren unterstützt wird. Die Unterschrift des Patienten wird danach auf einer ausgedruckten Einverständniserklärung festgehalten. Ein digitaler Prozess, welcher dieses Einverständnis auf elektronische Weise verrichtet und dokumentiert (eConsent), hat neben Kostenreduktion das bedeutsame Potenzial, das Verständnis des Patienten zu erhöhen, die Datenqualität zu verbessern und den Patienten zusätzlich zu ermächtigen. Diese Masterarbeit identifiziert acht Anforderungen für eine solche eConsent-Architektur im Zuge von Forschungsstudien und medizinischer Behandlungen. Anschließend wird ein auf dem HL7 FHIR-Standard basierendes Back-End-Modell dieser Architektur vorgeschlagen und prototypisch als Open-Source-Projekt implementiert. Realisiert wurde diese Arbeit in Kooperation mit zwei kanadischen Interessensvertretern: Das Centre for Global eHealth Innovation und Dr. Alvin Lin. Der Entwurf baut auf einem existierenden HL7 FHIR-Modell auf, welches derzeit für Einverständniserklärungen im Datenschutzbereich implementiert ist. Es werden zusätzliche Erweiterungen und Anpassungen vorgeschlagen, um die identifizierten Anforderungen realisieren zu können. Dabei ist ein Fokus auf die Beibehaltung einer Datenstruktur gelegt, die es weiterhin erlaubt, eine Benutzeroberfläche automatisch zu generieren. Durch die Verwendung der standardisierten SNOMED CT-Terminologie wird für Teile der Information eine semantische Interoperabilität mit anderen Informationssystemen des Gesundheitswesens ermöglicht. Die vorgeschlagene eConsent-Architektur erfüllt den Großteil der identifizierten Anforderungen. Allerdings ist das System durch die niedrige Reifestufe der verwendeten FHIRRessourcen limitiert. Des Weiteren definiert die Terminologie keine flächendeckende Begriffsmenge für den implementierten Anwendungsfall. Die zusätzliche Verwendung von proprietären FHIR-Extensions oder die Einführung einer anderen digitalen Informationsquelle als die vorgeschlagene FHIR-QuestionnaireResponse müssen in Betracht gezogen
werden.

Johann Aichberger hat im Rahmen seiner praktischen Bachelorarbeit eine Systemarchitektur für Mixed Reality-Brettspiele für das I2F Forschungsprojekt konzepiert und implementiert.

Abstrakt

In den letzten Jahren hat die Einführung vieler neuer Augmented Reality (AR) Devices, darunter zum Beispiel die Microsoft HoloLens, sehr stark zur steigenden Popularität und Verbreitung von AR beigetragen. Gestützt durch Weiterentwicklungen im Hardware- und Softwarebereich, sind seit Kurzem sogar gängige Smartphones dazu in der Lage, eine recht große Teilmenge aktueller AR-Funktionen abzudecken, sodass AR mittlerweile für beinahe jedermann zugänglich ist.


Die österreichische Firma rudy games mit Sitz in Linz möchte sich die rapide wachsende Verbreitung von AR-fähigen Smartphones durch die Entwicklung eines Mixed Reality-Brettspiels zunutze machen, das durch den Einsatz von AR-Inhalten auf Smartphones das klassische BrettspielErlebnis um eine zusätzliche Dimension erweitert. Im Rahmen des Forschungsprojekts interface2face Mixreality Game, das rudy games in Kooperation mit zwei Forschungsgruppen der FH Oberösterreich, Campus Hagenberg, im November 2017 gestartet hat, soll ein erster Prototyp erstellt werden, der die Machbarkeit eines derartigen Spiels evaluiert und eine Basis für etwaige Weiterentwicklungen bis hin zur Produktreife bildet. Ziel dieser Bachelorarbeit war es, erste Grundsteine für die Systemarchitektur des Prototyps zu legen. Hinsichtlich der Hardwarerachitektur sollte die Frage beantwortet werden, ob Brettspiel-Elemente wie Tokens, Karten und Spielfeld-Elemente eines modularen Bretts dafür geeignet sind, als Ankerpunkte für AR-Inhalte eingesetzt zu werden. Als problematisch wurde hierbei festgestellt, dass der Winkel zwischen dem Smartphone eines am Tisch sitzenden Spielers und den auf dem Tisch liegenden Spielfeld-Elementen, die mitunter recht weit vom Spieler entfernt liegen können, in der Regel zu flach ist, als dass eine zuverlässige Erkennung möglich wäre. Um dieses Problem zu umgehen, wurden Personal Interaction Spaces (PIS) eingeführt, die die Spielfeld Elemente als primäre Ankerpunkte für AR-Inhalte ersetzen sollen. Diese liegen direkt vor den Spielern, wodurch es deutlich leichter ist, das Smartphone so über einen PIS zu halten, dass dieser zuverlässig erkannt wird und damit auch eine stabile Platzierung von AR-Inhalten möglich ist.


In Bezug auf die Softwarearchitektur wurden das Model-View-Controller-Architekturmuster (MVC), Reaktive Programmierung und das Entity-Component-System-Architekturmuster (ECS) als mögliche Kandidaten für die Architekturbasis evaluiert. Das MVC-Muster, das ursprünglich für die Implementierung von grafischen Benutzeroberflächen konzipiert wurde, konnte im Rahmen der Erstellung eines ersten Minispiels nicht überzeugen. Die Reaktive Programmierung hat grundsätzlich einen positiven Eindruck hinterlassen, schien aber als zentrales Architekturelement ebenfalls ungeeignet. Sehr positive Ergebnisse konnten dafür mit dem ECS-Muster erreicht werden, das deshalb als Architekturbasis ausgewählt wurde.

 

Daniel Stigler hat im Zuge des Projekts EDEN an seiner Bachelorarbeit gearbeitet.

Abstrakt

In dieser Arbeit soll eine Evaluierung von verschiedenen Algorithmen des maschinellen Lernens, für die Informationsgewinnung aus Bilddaten zur späteren Notfallerkennung in Aufzugsystemen, durchgeführt werden. Dazu wird, zur Ermittlung der Informationen, ein Klassifikations-Prototyp erstellt, welcher in drei Teile aufgeteilt wird. Im ersten Schritt werden Bilder von segmentierten Objekten analysiert und eruiert, ob es sich dabei um einen Menschen oder Gegenstand handelt. Im zweiten Teil werden Gegenstände in weitere Objektkategorien klassifiziert, wodurch eine Aussage über eine bestehende Gefahrensituation gemacht werden kann. Im dritten Teil werden, als Mensch klassifizierte, Objekte einer Haltungsklassifikation auf Basis ihrer Silhouettenform unterzogen, wodurch später ein Notfallsignal ausgelöst werden kann, sollte eine Person über einen längeren Zeitraum am Boden liegen. Die getesteten Algorithmen werden von OpenCV angeboten und beschränken sich dabei auf K-Nearest Neighbor, Support Vector Machine, Random Forest sowie neuronales Netz. Die Ergebnisse zeigen, dass sich Support Vector Machines, mit einer Trefferquote von über 98%, unter Verwendung von HOG-Deskriptoren, bestens für eine Kategorisierung von Objekten in Mensch und Gegenstand eignen. Auch lieferte diese Kombination, im Vergleich zu anderen Klassifikatoren, zwar die besten Resultate für die weitere Gruppierung von Gegenständen, allerdings sind diese mit einer 73-prozentigen Klassifikationsrate nicht sonderlich befriedigend. Bei der Haltungsklassifikation mittels Silhouetten-Merkmale, erwies sich das neuronale Netz, mit einer korrekten Klassifikation von 92% aller Testdaten, als der geeignetste Klassifikator.

Lukas Reithmeier hat im Rahmen des PASS Projekts an seiner Bachelorarbeit zu „Analysen von Bauplänen“ geforscht.

Abstrakt

Die Analyse von Gebäudeplänen in Bezug auf Barrierefreiheit oder Probleme der Fluchtpfade ist eine schwierige Aufgabe. Im Projekt PASS (Plan Analytics using Self learning Solutions) werden daher Analysen von Bauplänen, welche zuvor von einem 2D-Bauplan in ein Interimsmodell übertragen werden, entwickelt. Diese Analysen beinhalten eine Validierung der Barrierefreiheit, eine simulationsgestützte Analyse der Fluchtpfade, sowie die optimale Platzierung von Möbeln in Räumen mittels Maschinlern-Algorithmen.

2017

Diese Bachelorarbeit ist im Rahmen des Forschungsprojekts Drive for Knowledge entstanden.

Abstrakt

Moderne Simulationshardware, wie Flugsimulatoren und Fahrsimulatoren sind teuer und platzineffizient. Außerdem ist ihr Potential meist nicht ausgeschöpft, da viele wichtige Merkmale der realen Welt, z.B. Rundumsicht, weniger oder nicht gegeben sind.

Die erneut aufkommende Technologie Virtuelle Realität erzeugt eine virtuelle Umgebung, die ein Modell der Realität darstellt. Mit dieser Umgebung kann der Benutzer mithilfe von neuartigen und intuitiven Möglichkeiten interagieren. Damit erzeugt die Virtuelle Realität eine sehr hohe Immersion, mit der, in Bezug auf Simulationen, die Effektivität der Software gesteigert werden soll. Zum einen soll es möglich sein kostengünstigere Alternativen zu der traditionelleren Hardware zu erzeugen, indem nur minimale reale Hardware beschafft wird und der Rest im Modell simuliert wird. Außerdem soll durch den gezielten Einsatz der Technologie in traditionellere Simulatoren, vor allem als Ausgabegerät, die Effektivität abermals verbessert werden.

Aktuell existieren zwei State–of–the–Art Geräte zur Nutzung der virtuellen Realität, die HTC Vive und die Oculus Rift. Beide sind sogenannte Head Mounted Displays, welche die benötigte Immersion der virtuellen Realität unterstützen. Beide Geräte werden anhand der Hardwarespezifikationen, APIs und Interaktionsmöglichkeiten analysiert.

Um die Eigenschaften der virtuellen Realität praktisch darzulegen wird im Rahmen dieser Arbeit auch ein Prototyp entwickelt, der sich rein auf das virtuelle Modell verlässt und keine weitere Hardware, mit Ausnahme der HTC Vive als Medium, einbindet. So soll gezeigt werden, dass mit minimierten Kosten und Aufwand eine doch sehr effiziente Simulation erzeugt werden kann.

Diese Bachelorarbeit ist im Zug des Berufspraktikums zu der Arbeit am Forschungsprojekt VREHA entstanden.

Abstrakt

Im Rahmen eines Forschungsprojekts mit der Firma Psii.Rehab stellt sich die Frage ob und wie Biofeedback in Form eines elektromyographischen Signals als Eingabemöglichkeit in einer Applikation verwendet werden kann. Damit soll die Effektivität der Spiegeltherapie verbessert werden. Dies soll eng mit der Virtuellen Realität, mobilen Geräten und Fingertracking zusammenspielen um ein immersiveres Erlebnis zu erzeugen. Daher wird im Rahmen der Arbeit Hardware in Form von Mobile–Virtual Reality Brillen, Fingertrackingsensoren und Elektromyographen evaluiert mit dem Ziel ein hardwareunabhängiges System zu entwickeln, das Android als Zielplattform hat und durch ein elektromyographisches Signal gestützt wird. Wegen diesen Gründen wird das Unity Framework eingesetzt

Hauptaugenmerk wird auf den Elektromyographen Thalmic Myo gelegt, da er eines der wenigen Geräte ist, die verschiedene Anforderungen, wie etwa Abgreifen von Roh–Signal, Einspeisen der Daten in Unity usw., ermöglicht. Damit sind aber viele Probleme verbunden, da die Funktionalität der vom Hersteller gelieferten Software unvollständig ist bzw. unter Android gänzlich fehlt und selbst nachimplementiert werden muss.

Das aus der Thalmic Myo erhaltene Roh–Signal muss durch spezielle Verfahren normalisiert und aufgrund der Anforderungen abstrahiert werden. Erst dann kann es für eine Demoapplikation eingesetzt werden. Diese Applikation ist lediglich eine kleine Demonstration, wie die Implementierung eines Eingabesystems basierend auf einem Elektromyographischen Signal aussehen kann und welche Möglichkeiten sich dadurch präsentieren.

Andreas Pointner beschäftigte sich im Rahmen des Drive for Knowledge Forschungsprojekts mit seiner theoretischen Bachelorarbeit zum Thema ‚Edge-Detection zur Fenstererkennung im Fahrzeug‘.

Abstrakt
In den letzten Jahren bekamen die Begriffe Virtual Reality und Augmented Reality eine zunehmende Bedeutung. Für viele Funktionalitäten ist dabei ein einfaches VR/AR-Gerät ausreichend, dennoch werden für manche Anwendungsbereiche zusätzliche Technologien benötigt. So wird zum Beispiel um Fahrer von Einsatzfahrzeugen zu trainieren, auf derartige Technologien gesetzt. Dabei wird eine genaue Position der Windschutzscheibe benötigt um festzustellen, in welchem Bereich des Sichtfeldes zusätzliche Gefahren eingeblendet werden können. Diese Arbeit hat sich genau diese Problematik als Ziel gesetzt und versucht dabei die Möglichkeiten der Fenstererkennung in Fahrzeugen mittels Kantenerkennung aufzugreifen. Dabei werden vor allem zwei zentrale Fragestellungen in den Mittelpunkt gestellt. Zum einen „Ist es möglich Fenster rein mittels Kantenerkennung zu detektieren?“, zum anderen „Welche verschiedenen Algorithmen zur Kantenerkennung existieren und welche Vor- und Nachteile haben diese hinsichtlich der Erkennung von Fenstern in Fahrzeugen?“ Um diese beiden Fragestellungen beantworten zu können, unterteil sich diese Arbeit in einen Theorieteil, sowie in der Ausarbeitung mehrere Prototypen. Im theoretischen Teil dieser Arbeit wird die grundlegende Funktionsweise verschiedenster Kantenerkennungsalgorithmen beschrieben, sowie überprüft warum und ob sich diese zur Erkennung von Fenstern in Fahrzeugen eignen. Es wurden dabei im wesentlichen folgende Operatoren/Verfahren betrachtet: Roberts, Prewitt, Sobel, Kompass-Gradient, Kirsch, Marr-Hildreth und Canny. Für den praktischen Teil wurden drei Prototypen entwickelt, welche die drei ausgewählten Algorithmen hinsichtlich ihrer Funktionalität vergleichen. Die Auswahl fiel dabei auf Marr-Hildreth und Canny, da diese durch ihre Parametrisierbarkeit für dieses Szenario angepasst werden können. Als Vergleich zu den normalen steht stellvertretend Prewitt. Dabei kann damit ermittelt werden, welcher dieser Prototypen sich für ausgewählte Szenarien besser eignet und welche Einstellungen und Parametrisierungen des Prototypens dafür notwendig waren. Die erzielten Ergebnisse der Prototypen waren sehr durchwachsen. In manchen Szenarien zeigten sie klar, welche Probleme rein mittels Kantenerkennung auftreten, in anderen wiederum erzielten sie sehr gute Ergebnisse. Außerdem zeigten sie die typischen Probleme von Kantenerkennungssysteme, besonders gewisse Störfaktoren wie Rauschen oder Bildunschärfe verursachten Probleme. Der Einsatz von Kantenerkennungsalgorithmen zur Fenstererkennung ist dann möglich, wenn es sich wirklich um perfekte Musterszenarien handelt. Vor allem dann, wenn wenig Störfaktoren in der Umgebung vorhanden sind. Um die Erkennung auch für andere Szenarien zu ermöglichen, müssen die Algorithmen mit weiteren Verfahren wie zum Beispiel Objekterkennung kombiniert werden.

 

Die praktische Bachelorarbeit ‚Bildverarbeitungsmethoden zur Personenidentifikation‘ von Andreas Pointner entstand im Zuge des Forschungsprojekts GUIDE.

Abstrakt

In dieser Arbeit wird die Möglichkeit evaluiert, mittels Bildverarbeitungsmethoden eine Personenidentifikation durchzuführen. Dabei werden aktuelle Methoden zur Identifikation einer Person aufgegriffen, diese beschrieben und deren Automatisierungsmöglichkeiten aufgezeigt. Zu Beginn wird dazu der Prozess analysiert und mittels BPMN abgebildet. Dabei werden die entscheidenden Bereiche, welche für die rechtliche Umsetzung benötigt werden, modelliert. Die wesentlichen drei Punkte, welche in dieser Arbeit aufgegriffen werden, sind die Erkennung eines Ausweises, die Validierung von Sicherheitsmerkmalen, sowie das Auslesen der Maschinen lesbaren Bereiche. Im ersten Prozessschritt wird analysiert wie mittels Hough-Lines ein Ausweis in einem Bild erkannt werden kann. Dazu werden die dafür benötigten algorithmischen Grundlagen erklärt, sowie die Hough-Transformation implementiert. Nach erfolgreicher Erkennung und Entzerrung des Ausweises wird mit der Validierung von Hologrammen fortgefahren. Hierfür werden unter Verwendung von Binär-/Farbsegmentierung die Bereiche des Ausweises analysiert und mit einem Template verglichen. Somit lässt sich über einen Pixelvergleich ein Konfidenzwert über das Vorhandensein eines Hologramms ermitteln. Durch die Analyse über mehrere Bilder, kann so ermittelt werden, ob ein gültiges Hologramm vorhanden ist. Im späteren Verlauf der Arbeit wird dann auf die Texterkennung (OCR) eingegangen. Dafür werden hauptsächlich die verwendeten Vorverarbeitungsschritte beschrieben. Die eigentliche Erkennung der Zeichen wird dann von Tesseract einem OCR Framework übernommen. Zum Schluss werden die jeweiligen Ergebnisse der einzelnen Schritte ausgewertet. Als finales Ergebnis lässt sich dabei zeigen, dass gerade die Form der Hologramm Erkennung noch Schwächen aufweist. Deshalb werden in einem abschließenden Kapitel Verbesserungs- sowie Optimierungsmöglichkeiten aufgezeigt.
 

Diese theoretische Bachelorarbeit mit dem Titel ‚Augmented Reality Frameworks‘ ist im Rahmen des Drive for Knowledge Projekts entstanden.

Abstrakt

Für den Bereich der derzeit allgegenwärtigen Technologie Augmented Reality existieren diverse Frameworks, welche Entwickler bei der Erstellung von Applikationen in dieser Domäne mit unterschiedlichsten für dieses Einsatzgebiet geeignete Funktionalitäten entlasten. Diese Abhandlung befasst sich deswegen einleitend mit der Definition und den Grundlagen von Augmented Reality. Weiterführend wird die Differenzierung zu der verwandten Technologie Virtual Reality behandelt, um über eine Erläuterung der technischen Basis in Bezug auf die Software als auch die Hardware, bis hin zu bekannten, mit der Verwendung von Augmented Reality Systemen einhergehenden, Problemen zu kommen. Aufbauend auf dieses Wissen folgt die Definition von Augmented Reality Frameworks, den verschiedenen grundlegenden Bestandteilen und einer Auswahl an Entwurfsmustern, welche von mehreren solcher Softwarebausteine umgesetzt werden. Bevor es zu einem Überblick an existierenden Lösungen verschiedenster Hersteller übergeht, werden typische Funktionalitäten behandelt, welche von diversen Frameworks zur Verfügung gestellt werden. Abschließend werden anhand zuvor festgelegter Prämissen die Frameworks Vuforia und Kudan AR Engine selektiert, mithilfe von Prototypen näher erläutert und in einem abschließenden Kapitel unter anderem in den Disziplinen des markerbasierten und des markerlosen Trackings miteinander verglichen. Mit der eigentlichen Fragestellung dieses Elaborats (Welche AR-Frameworks existieren und welche Funktionalität decken diese ab?) als allgegenwärtige Problemstellung soll so auf Unterschiede aufmerksam gemacht werden, welche bei der Implementierung von Anwendungen im Bereich von Augmented Reality von Bedeutung sein können, um so für zukünftige Entwicklungen sowohl eine technische Grundlage als auch eine Basis hinsichtlich des konzeptionellen Verständnisses zu schaffen.
 

Diese praktische Bachelorarbeit zum Thema ‚Bildbasierte Orientierung im Outdoorbereich‘ ist im Rahmen des Drive for Knowledge Forschungsprojektes entstanden.

Abstrakt

Die räumliche Orientierung ist für Anwendungen vor allem im Bereich von Augmented Reality von großer Relevanz. Neben der Position im dreidimensionalen Raum handelt es sich dabei um einen der wichtigsten Faktoren, um virtuelle Objekte im Raum präzise und richtig darstellen zu können. Dabei ist die Orientierung bei sogenannten Head Mounted Displays, wie etwa der Microsoft HoloLens, mit der Blickrichtung gleichzusetzen, wodurch eben jene Daten darüber bestimmen, welche Informationen im Sichtfeld eines Benutzers dargestellt werden und welche nicht. Dies geschieht zum derzeitigen Stand der Technik zu meist markerbasiert mit in der Umgebung angebrachten, visuellen Hinweisen und/oder mithilfe von Sensoren. Diese Abhandlung erläutert anhand der beiden Augmented Reality Frameworks Vuforia und Kudan AR zwei übliche Möglichkeiten zur markerbasierten Bestimmung der eigenen Orientierung und beschreibt das Problem dieses merkmalsbasierten Ansatzes, dass Anwendungen von einer einzigen fixen Position oder einer enormen Anzahl von Referenzbilder für jeden virtuellen Gegenstand abhängig sind. Diese fehlende Praxistauglichkeit führt zur Notwendigkeit eines alternativen Ansatzes, woraus sich das Ziel dieses Diskurses ableitet, einen merkmalsunabhängigen, bildbasierten Ansatz zu finden, welcher mithilfe der Berechnung des Bildverschubs die Orientierung ermittelt. Diese Vorgehensweise basiert auf der zugrundliegenden Hypothese, welche besagt, dass die Rotation um die eigene Achse bei gleichbleibender Position im Raum durch eine Translation der Eingangsbilder vereinfacht ermittelt werden kann. Anhand mehrerer Testszenarien wird die Implementierung dieser Hypothese evaluiert. Basierend auf diesen Ergebnissen wird die Fragestellung dieser Abhandlung „Ist es möglich, im Outdoorbereich bei einem gleichbleibenden Ausgangspunkt mithilfe von bildbasierten Verfahren die präzise Orientierung im Raum zu ermitteln?“ beantwortet und aufgrund des Resultats von einem Medianunterschied von 0,00015° zwischen realer und berechneter Rotation als untermauert erachtet.

2016

Diese praktische Bachelorarbeit wurde von Anna Lackerbauer im Rahmen des Kimbo Projekts erstellt.

Abstrakt

Die Anbindung mobiler Geräte als Datenquelle oder -verbraucher an ein bestehendes System des Gesundheitswesens erfreut sich wachsender Beliebtheit, bringt allerdings auch einige Herausforderungen mit sich, weshalb derzeit von Integrating the Healthcare Enterprise (IHE) ein Profil zum mobilen Dokumentenaustausch entwickelt wird. Diese Arbeit dokumentiert neben der Vorgehensweise auch auftretende Herausforderungen während der Implementierung im Zuge eines mehrmonatigen Berufspraktikums. Die Entscheidungen, die nötig waren um diese Herausforderungen — welche hauptsächlich im Zuge der Versionierungen des sich noch in Entwicklungsstand befindenden Profils und des FHIR-Standards auftraten — zu lösen, sind in dieser Arbeit erfasst und argumentiert. Des Weiteren wird beschrieben, wie die Integration in das bestehende System erfolgte. Diese Arbeit dient vor allem zur Dokumentation der Implementierung der derzeit aktuellen Version dieses Profils namens Mobile access to Health Documents (MHD).

Die theoretische Bacheloarbeit mit dem Titel „Stadtroutingsystem für Menschen mit Mobilitätseinschränkung“ wurde von Anna Lackerbauer im Rahmen der Landessonderausstelung Gallneukirchen erstellt.

Abstrakt

Das Auffinden eines barrierefreien Weges ist für mobilitätseingeschränkte Personen kraftraubend und oft nicht trivial, weshalb ein ihren Ansprüchen entsprechendes System zur Wegfindung eine große Hilfe darstellt. Der Bereich der Geoinformatik ist sehr breit gestreut und in Verbindung mit gegebenen Einschränkungen aufgrund der Barrierefreiheit ergeben sich beachtliche Herausforderungen für Entwickler, die ein solches System erstellen. Auf Basis von bereits bestehenden oder sich in Entwicklung befindlichen Produkten, Interviews und Literaturrecherchen, sowie einer selbstständigen Einarbeitung in das Thema Höhendaten, liefert diese Arbeit einen Überblick über die für Entwickler zukommenden Herausforderungen. Des Weiteren werden Lösungsvorschläge gegeben und ein Prototyp zur Evaluierung von Interpolationsalgorithmen liefert Testergebnisse deren Genauigkeit betreffend. Diese Arbeit kann als Basis zur praktischen Umsetzung eines prototypischen Routingsystems für mobilitätseingeschränkte Personen herangezogen werden oder auch, durch verschiedene Vergleiche der Algorithmen und des Kartenmaterials, als Entscheidungshilfe der zu verwendenden Komponenten dienen.