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Abstract—An alteration of the job shop scheduling problem,
concerning advertisement scheduling on digital advertisement
spaces, is presented. Dispatching Rules (DR), Iterated Local
Search (ILS) and Genetic Algorithms (GA) are discussed and
applied to the problem space. The results show that ILS is the best
performing heuristic, and surpasses the other heuristics especially
in large problem spaces (≥ 100 machines, ≥ 100 jobs). The results
match previously made findings, which indicates that effects on
large-scale problems should be further researched in conjunction
with amalgam algorithms between DR, GA and ILS.
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I. INTRODUCTION

The job shop problem (JSP) is a well known optimization
problem and a number of different heuristics have been re-
searched as a solution to this problem. While job shop schedul-
ing has many variations, such as waiting times on machines, or
jobs needing to be executed on specific machines, the problem
always requires a multitude of jobs to be scheduled on one
or more machines. The schedule must be optimized towards
one or more objective, such as finding a schedule of minimal
length, or minimal tardiness on finishing jobs. [1], [3]

The JSP presented in this article has some unusual con-
straints which stem from the problem domain, which is the
scheduling of advertisement jobs to electronic displays. This
results in some unique differences from regular JSP.

An advertisement job distinguishes itself from a regular
factory as follows:

Unique operation: Unlike a regular factory job, which
usually consists of several different steps that need to be
performed to create a product [4], a job in the context of this
article has only one single operation that is repeated several
times. This operation is playing the advertisement on one
electronic display.

Parallelism: While producing one physical product can
rarely be parallelized on several different machines, every ad-
vertisement job may be processed on any number of machines
at the same time.

Schedulable times: This is a unique constraint that would
not be considered in regular JSPs. The time of a day a job is
allowed to be played (adult content, etc.) restricts the times a
job can occur in a schedule.

Constraints on job ordering: A job may never be run on the
same machine directly before or after a job that is in direct
competition (same branch) to it. This can be compared to job

shop scheduling, that requires set-up times between different
jobs, but is not completely identical to this.

Flexible machine selection: Similar to flexible JSP (FJSP),
where a job can be processed on any machine on a given set
of machines[3], a job can also be processed on any machine
positioned in an advertisement region, such as a state or city.

Machines that process the advertisement jobs have unique
constraints as well:

Stochastic, volatile standby time: In a factory machine the
standby time of the machine is known beforehand [1]. This is
not the case in advertising where the standby time is defined
by the length of time people are in close proximity to the
advertisement space. Since this length of time is unknown be-
forehand, the problem at hand is stochastic. An approximation
of the standby time can be reached by collecting statistics on
past standby times. However, while analysing the problem, it
has been observed that these times are highly volatile.

Throughput The length of an advertisement is known in
advance. This is similar to the fixed length of an operation in
JSP [1]. However, a playback has different qualities depending
on the desired target audience that shall be reached. One
person of the target audience seeing the advertisement is
called an impression, and was used as the measurement for
throughput. Thus the operation time to finish the job actually
varies depending on the target audience that can be reached
on a machine, meaning one machine may be able to finish a
job faster than another one.

This paper shows approaches how to solve the version of
JSP at hand and compares their applicability on the problem
domain. Methods (2) shows the algorithms that were applied to
the problem domain. Results (3) shows a comparison between
these algorithms. Finally these results are discussed (4) and
an outlook on further possible research (5) is given.

II. METHODS

The methods for this problem were conducted as an offline
scheduling approach as opposed to online. The difference is
that in online scheduling the schedules are calculated during
machine operation and can thus react to immediate changes in
the environment, while offline scheduling requires the entire
schedule to be calculated beforehand [13]. Online Scheduling
could not be applied because the distributed machines do not
have a constant contact to the scheduling environment, and
thus aren’t able to request further scheduling instructions.



Usually a schedule is simply a list of instructions that
are to be executed in order. In this context however, every
instruction is connected to a data-file (e.g. video, image) that
needs to be played. Due to limitations in processing power and
storage capabilities, it was further necessary to ensure that a
schedule for a machine is restricted in size and complexity. As
a representation form of the JSP, a job based representation
[cheng:survey1] was selected. For each machine a list of jobs
are to be executed in the form of a round-robin schedule.

Several heuristics were tested for applicability to the prob-
lem space. All Heuristics have two performance measures
to be optimized towards. The first performance measure is
the amount of generated impressions of the desired target
audience of the job divided by the target audience available at
the machine inferred through statistical analysis (equation 1).
The second performance measure is minimizing the tardiness
of an advertisement job (equation 2). Both measures are
equally important and thus, when determining quality, are
added together as can be seen in equation 3.
dtaj = DesiredTargetAudienceforJob
tta = TotalTargetAudience
gi = GeneratedImpressions
rij = RemainingImpressionsforJob
rd = RemainingDays

p1 =

Machines∑
n=1

(
dtajn
ttan

) ∗ gi (1)

p2 =

∣∣∣∣∣rijrd −
Machines∑

n=1

gi

∣∣∣∣∣ (2)

QualityforSchedule =

Jobs∑
n=1

(p1n + p2n) (3)

A. Dispatching Rules

They are also called priority rules and are a greedy con-
struction heuristic, that are used to determine which job is
processed next on a machine. Every time a machine runs
out of instructions and requires new ones the dispatching rule
selects the job with the highest priority from a pool of available
jobs. The priorities of the jobs are determined by one or more
performance measurements, such as satisfying job-due-dates,
or minimizing the make-span of jobs. [6], [5]

Dispatching rules are often used in online scheduling due
to the fact that the rules calculate a schedule incrementally,
meaning that even partially calculated schedules can be used
instantly since they won’t be changed anymore. However they
can also be applied offline by calculating the entire schedule
beforehand. [5], [14]

In recent years efforts have been made to improve, or com-
pletely autogenerate priority rules using genetic programming
[3], [15].

The projects were prioritized by their remaining impressions
divided by the amount of days the projects were still schedu-
lable (equation 4). Due to the offline scheduling nature the

machines were not selected when they need more instructions,
but rather pre-sorted by the impressions they can produce for
the desired target audience and then selected in order (equation
5).

PriorityJobs =
rij

rd
(4)

PriorityMachines = (
dtajn
ttan

) ∗ gi (5)

B. Iterated Local Search

Local Search (LS) is a methaheuristic that continually
improves a solution by applying a small change to the solution
and accepting it, if the change improves the overall solution
quality, which is determined by one or more performance
criteria. LS can get stuck in a local minimum.

Iterated Local Search (ILS) is an improvement upon LS.
ILS applies LS iteratively after finding a local optimum and
restarting the search with a modified version thereof, until
either the global optimum is reached or a stop condition
applies. The modification in ILS is often called a kick, since it
is applied to kick the LS out of a local optimum by mutating
a bigger part of the solution. When kicking, it is necessary
to find an appropriate kick size, since too small kicks result
in staying in the local optimum while bigger kicks result in a
loss of information on the LS. [8], [10], [9]

Tabu Search, an alternative method of applying LS, is
another promising option of applying search to JSP. It is hard
to apply on huge problem sizes (the JSP in question needs
to be able generate schedules for ≥ 1000 machines and jobs)
due to keeping a tabu list of already visited solutions and the
resulting growth of memory-usage. Thus Tabu Search was not
available to comparison in the problem area. [8], [11]

The application of the shifting bottleneck heuristic [12] was
not applied in the problem since all machines are capable of
playing any job and jobs are independent from each other, thus
no bottleneck will occur. Instead the LS of the ILS selects a
random machine to be optimized and randomly switches out
one job.

The ILS that was used is using a Random LS as local search
step. The LS cycles through every machine and randomly
mutates the schedule of one machine and applies the solution
if the mutation results in a better global quality, or ignores
the mutation if the quality becomes worse or stays the same.
The cycling is usually not done in ILS, but rather a number of
random mutations is applied [9]. However this solution makes
the LS independent of the problem size itself.

As an alternative to mutating the entire schedule of one
machine in the local search step a random mutation of one
entry in the schedule was also thought of. This proved to be
a too small mutation early on in testing (little to no quality
improvement during LS, even during runs with ten thousand
repeats), and was thus not further researched.

The kick of the implemented ILS mutates a percentage of
the solution by randomly generating new schedules for some
of the machines.



C. Genetic Algorithm

Genetic Algorithms (GA) have successfully been applied
over a multitude of JSP instances. However, due to their high
demand in processing time they are exclusively used in offline
scheduling. [13]

GA apply the process of natural selection to solution in-
stances of a problem, such as JSP. In GA a single solution is
thought of as a chromsome that consists of a gene sequence.
This gene sequence can be manipulated (mutated) or crossed
with other chromosomes. First an initial population of valid
solutions is generated, usually randomly. Each of the solutions
is then evaluated according to a fitness function. Afterwards,
the next generations will be generated based on the previous
generation. Until the full next generation is built, two or more
solutions are selected by a selection operator (tournament,
stochastic, ...), similar to survival of the fittest, and then
crossed with each other (one-point, two-point, uniform, ...),
similar to a breeding process. Each new solution may be
mutated, where one or more genes are randomly changed in
the solution, similar to the biological evolutionary process. Re-
search suggests that the mutation rate should be low (between
0.25% and 2%) and is correlated to the selection pressure of
the GA [7]. There is also an option to apply elitism where a
few of the the best solutions of the previous generation will
be carried over to the next [17]. [16], [2]

Recent attempts have been made to hybridize GA with other
machine learning algorithms. [19] mixes GA with dispatching
rules with promising results. In the publication chromosomes
are generated with the basic GA algorithm, including crossover
and mutation, but instead of the chromosomes being solutions,
the solutions are generated with dispatching rules. In another
application [18] GA is mixed with fuzzy selection that replaces
the usual fitness-function selection of chromosomes for the
next generation. The dispatching rules are actually contained
in the chromosome itself since the GA is not responsible for
generating a schedule, but rather for allowing the selection of
a dispatching rule.

The fitness function applied to the GA for the advertisement
scheduling problem was designed to match the performance
measures of the problem. The quality of a solution is measured
by the amount of impressions that can be reached on the
desired target audiences over all jobs and machines, and the
minimal tardiness of the jobs.

The implemented algorithm applied a uniform crossover on
two solutions selected with tournament selection. No elitism
was applied, and several different mutation rates were tested.
The applied mutation randomly recreates the entire schedule
for one single machine.

D. Evaluating the heuristics against each other

The heuristics are inherently comparable because the same
representation form for the solution was selected for all of
them. The quality of all results was calculated using the
evaluation function available in the Genetic Algorithm. This
had to be done because Distribution Rules do not calculate the
Quality of a solution.

TABLE I
APPLIED ALGORIHMS AND PARAMETERS

Algorithm Parameter Name Parameter Values

Distribution Rules - -

Iterated Local Search kick rate α = {1, 5, 10, 20}(%)

iterations it = {100, 1000}
local search steps l = {100, 1000, 10000}

Genetic Algorithm elitism e = {0}
generations g = {1000}

mutation probability α = {1, 5, 10, 20}(%)

population size p = {100, 200, 1000}

The evaluation was done with test data as opposed to using
real jobs and machines. This was done due to the fact that only
very few machines were available at the time of writing, and
the expected growth of the system amounts to at least 1000
machines per year. Thus performance was also an issue, and
it could not readily be tested with the machines available.

The generated test data was entirely randomly generated
with constraints based on observations made on available real
data. For example, the amount of impressions a machine can
generate daily is random in between the realistic minima and
maxima observed, and includes some outliers as observed in
real data.

III. RESULTS

All Algorithms were tested and compared using the same
generated testdata. The tests were conducted in problem spaces
of different sizes. The size of a problem space is defined
by the amount of machines M = {1, 10, 100} and Jobs
J = {1, 10, 100, 500, 1000} in the problem set. Each test set
consists of a subset of the next-larger one. The test parameters
can be seen in I. Test runs were conducted with all available
permutations of the parameters with the exception of 1000
iterations x 1000 local search steps in ILS.

The theoretical optimal quality of the perfect solution is
0, meaning that the entire target audience of the job was
met, and no tardiness occurred. The more tardiness occurs or
target audiences are missed, the higher the value of the quality
becomes. The real optimum of each test-case is unknown since
the tests were auto-generated rather than using benchmarks or
pre-made tests.

For the distribution rule, only one single run configuration
(prioritize projects by budget, assign to machines by amount
of impressions generated) was tested (figure 6).

The ILS was tested with different kick rates α =
{1, 5, 10, 20}(%), meaning that different percentages of the
solution were modified. Furthermore different amounts of
iterations it = {100, 1000} and local search steps l =
{100, 1000, 10000} were tested. The results can be seen in
figures 1, 2, 3 and 4 each figure showing results for one
selected kick rate. Figure 5 shows the final comparisons
between the best parameters of each group.

ILS works best with a local search rate of 10000 and 100
iterations. It is not surprising that the execution with the most
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Fig. 1. Quality in differently sized search spaces for Iterative Local Search
kick rate α = 1%
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Fig. 2. Quality in differently sized search spaces for Iterative Local Search
kick rate α = 5%
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Fig. 3. Quality in differently sized search spaces for Iterative Local Search
kick rate α = 10%
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Fig. 4. Quality in differently sized search spaces for Iterative Local Search
kick rate α = 20%
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Fig. 5. Quality in differently sized search spaces for Iterative Local Search
over different kick rates

operations performs best. However, since the runs with 1000
local searches to 1000 iterations perform only slightly worse,
this indicates that more local searches than iterations should
be performed.

No matter which combination of runs was taken, a 1%
kick rate always vastly outperforms similar runs with higher
kick rates (figure 5). This can be attributed to the fact that
kicking 1% of the solution moves it far enough out of the
local optimum to find a new one, while kicking more percent
results in a loss of information from the local search steps and
thus performs worse. This result is reinforced by the fact that
each lower kickrate outperforms each higher one.

The genetic algorithm runs were performed with popula-
tion sizes p = {100, 200, 1000} and mutation rates α =
{1, 5, 10, 20}(%). All runs were conducted over 1000 gen-
erations. The results in table II show that any mutation or
population size is an insignificant change. However, overall the
best-performing runs had a 20% mutation rate, which indicates
that machine schedules are independent from each other and
thus stochastic search methods would be better suited for
application in the problem space.

Figure 6 shows a comparison between the three different
applied heuristics. For GA and ILS the solutions with the best
parameters were selected respectively.

It was to be expected that the DR as construction heuristics
are outperformed by the two optimization heuristics. The fact
that ILS vastly outperforms GA reinforces the suggestion that
the problem is better suited for stochastic methods, as the high-
mutation rates on GA previously suggested.

The vast difference of quality between the two is surprising,
since GA is usually only slightly outperformed by LS related
methods such as Tabu Search. This discrepancy may stem from
the smaller problem sizes usually looked at in benchmarks and



TABLE II
QUALITY OF THE RESULTS IN GA ACCORDING TO MUTATION RATE α(%),
POPULATION SIZE p IN DIFFERENT PROBLEM SIZES SORTED BY MACHINES

M AND JOBS J

α p M1
J1

M1
J10

M10
J10

M10
J100

M100
J100

M100
J500

M100
J1000

1 100 66 204 969 2948 2128 30160 78249
1 200 66 201 969 2686 2262 30508 78816
1 1000 66 194 969 2110 2342 31251 78471
5 100 66 199 969 2584 1664 28898 76758
5 200 66 194 969 2247 1997 29871 78603
5 1000 66 194 969 2180 1806 30621 78185

10 100 66 196 969 2079 1098 28212 76405
10 200 66 194 969 2417 1573 29310 77501
10 1000 66 194 969 1941 2104 28302 78145
20 100 66 196 969 2021 1200 28599 75996
20 200 66 182 969 2206 1412 27913 75550
20 1000 66 194 969 2494 1921 28592 77165

where similar to the findings here. Small problem spaces show
only small differences in quality. [8]

IV. DISCUSSION

The results adhere to the no free lunch theorem [20], which
states that no one algorithm is superior over all problem-
spaces, showing that ILS outperforms this particular instance
of the job shop problem.

The results also show similar to other findings that construc-
tion heuristics are outperformed by optimization heuristics.
The ILS can be added to the local search methods that
outperforms GA, which already holds true for Tabu Search
and Variable Depth Search. [8]

V. OUTLOOK

Since DR, GA, and the ILS all already exist and have been
applied to the problem space, it stands to be reasoned that
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Fig. 6. Quality comparison between DR, GA, and ILS

a hybridization would lead to interesting results. This has
been done already with promising results [19], and could be
a promising area of research on this particular problem.

The discrepancy between the findings here and literature
concerning the performance on large problem spaces demands
further investigation. It is unclear if ILS really vastly outper-
forms the GA and Distribution rules in large problem space or
if this is only true for this particular problem space. Testing
the algorithms with the most basic agreed upon version of
job shop scheduling [1] and possibly existing benchmarks up-
scaled to large problem sizes (≥ 100 machines and ≥ 100
jobs) should yield answers in this context.
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