Elevator Simulation for Testing
Advertisement Scheduling Systems

Daniel Wilfing, Oliver Krauss and Andreas Schuler
University of Applied Sciences Upper Austria
Softwarepark 11, 4232 Hagenberg, Austria
Homepage: http://ehealth.projekte.fh-hagenberg.at/

Abstract—An agent-based elevator simulation was imple-
mented to test the validity of an advertisement scheduling
system. The elevator simulation imitates the elevators and their
advertisement system, thus testing the different schedules and
sending the results back to the scheduler. To validate the results,
certain data sets of the simulation application are compared with
expected values. First results have shown that the created data
is in a valid range around the estimations. Finally, methods to
further improve the simulation are presented. It was found that
agent-based simulations are a good method to test systems, which
are too complex or expensive to test in the real environment.

Keywords—agent based simulation, elevator simulation, test
case, automatic scheduler

I. INTRODUCTION

Setting schedules for advertisements is a difficult task, as
the required work grows exponentially with the problem size
[1]. Some advertisers favour continuous advertising, others
prefer flighting or pulsing [2]. Certain advertisements should
not be displayed after each other, like ads of business rivals.
Configuring the schedule manually is doable if only a few
schedules have to be created, but becomes more complex
and time-consuming when more schedules should be uniquely
configured for different display units.

Automatic scheduling systems can take care of this problem,
by calculating different schedules given certain constraints
[3]. They are several times faster than a manual approach
and are capable to incorporate results of previous schedules.
They constantly improve their schedule calculation thanks to
this. However, automatic systems are still prone to mistakes,
like ignoring certain aspects that have not been considered
with constraints (e.g. displaying advertisements of business
rivals one after the other). Testing the different schedules
would be beneficial, but using the real environment is usually
expensive or outright impossible, if the necessary devices are
not available. Testing distributed a system, or systems which
are already in use, proves difficult as well. Using a simulation
approach might solve this problem, as it can simulate all
kinds of scenarios with little set-up time. Simulations are also
able to simulate different behaviours of a model much faster,
compared to a real environment [4].

In this work, an application is introduced, that simulates
an elevator system. The simulation was tested using the
automatic advertisement scheduler. The advertisements defined
by the scheduler, are displayed during each elevator ride. The
simulation system collects all runs and additional information

regarding the run (e.g. start- and end-time of the run, displayed
advertisements, etc.). This information is sent back to the
scheduler, so it can make adjustments regarding the next
schedules. This way, testing of the advertisement system is
done without using the real environment. The results of the
simulation are evaluated and the validity of this test method
presented.

II. METHODS

Simulations allow the reenactment of different situations
and are usually used for scenarios, which are too complex
or time-consuming to perform in the real environment. Core
of each simulation is a model, which is a depiction of an event
or a system. The simulation then defines the different actions
and behaviours for the model. [5]

The two main areas of simulations are continuous and
discrete models and simulations. Continuous simulations im-
itate a continuously changing system and often require real
numbers for calculation. Additionally, infinitely many changes
can occur in each time interval [6]. For discrete simulations,
changes occur at certain instants in the simulations. Changes
between those time steps are not calculated and dismissed [7].
The simulation presented in this work implements a discrete
approach, as each event happens at certain instants.

The model used in this work describes a single building with
multiple floors and persons, as well as an elevator system.
During the simulation, the persons move from one floor
to another using the elevators. The elevators then transport
the persons to their requested floor and start displaying the
advertisements. Information regarding this elevator is collected
and sent back to the scheduler, like the start- and end-time of
each elevator ride and which advertisements were displayed
during said rides. This information is then compared with a
set of estimations, to verify how genuine the behaviour of the
simulation is.

The following sections describe the structure of the model,
as well as how the different person and elevator behaviours
have been implemented.

A. Structure of the model

The simulation consists of different agents with distinct
behaviours, which are interacting with each other. This type of
simulation is called agent-based simulation [8]. One of these

agents is represents a building, that contains an arbitrary num-
ber of persons and elevators. The building consists of multiple
floors, that have a specific type. Possible floor types are lobby,
apartment, shop, and office. Persons in the simulation require
these types, so they can decide which floor they want to visit
next. A graphical visualisation of a model can be seen in figure
1.

Different agents are assigned to simulate the behaviour
of the elevators. These agents are heavily influenced by the
person-agents in the building, which use them to move from
one floor to another. Each elevator-agent in the building has
attributes that define its speed and capacity, as well as a list
of advertisements that the elevator displays to passengers. The
advertisements are given by the automatic scheduler and get
displayed in a round-robin manner. Round-robin is a form to
sequentially process items in a list, starting back from the
beginning when the entire list got processed [9].

Person-agents keep the simulation running by autonomously
interacting with elevator-agents. These agents are positioned
on different floors inside of the building, depending on the
simulation setup. During the simulation, they move to different
floors using the elevator-agents and generate the necessary
elevator rides. A person-agent decides to which floor he wants
to move next, but the elevator-agent ultimately decides in
which order the different floors will be visited.

The behaviours of each agent have been modeled after state
machines, which define the different actions and their order,
in which they happen during simulation. This is similar to
the approach presented by [10]. The state machines of the
different agents influence each other and certain states can only
be reached through actions of other agents. The state machines
allow a more sophisticated behaviour for the different agents,
thus enhancing the agent-based simulation [11].

| 2] Elevator Simulation SNASE X
o] I»
El 2%
2 2 0 -
= Moved persons: 24
Rides: 1
1 A 0 & ¥ Played advertisements: 12
B v

Seen advertisements: 38

Seen advertisements
(correct target audiencey: ° (@0 %)

Current time: 23:01:20 (Day 1)

%% g

0 lLobby |3 3

‘ Resume| | Resume in background | Stop ‘

Fig. 1. A graphical representation of the model shows the events during
simulation.

B. Person behaviour

The person-agents are constantly interacting with the other
agents in the simulation and move from one floor to to another.
To make this possible, they need a certain behaviour. With a
random behaviour, the simulation would already be functional
and generate the required elevator runs. However, this makes
it impossible to simulate specific scenarios, like the In- and
Out-rush. These rushs are behaviours that have been observed
in real elevator systems and occur at certain times. In-Rush
happens when many people want to move from to the ground

floor to one of the upper floors (e.g. people go to work).
Out-Rush occurs when people go from the upper floors to
the ground-floor (e.g. people go for lunch) [12]. To simulate
these scenarios, it is necessary to define at which time a person
should go to a specific floor (e.g. at 12:00, person wants to
visit the cafeteria). A person should move several times in the
simulation, so it requires more than one of those time-based
behaviours.

A person-agent in the simulation has to interact correctly
with the other objects in the simulation. After it decides to
change floor, it should press the correct floor button and wait
for the elevator. The person should enter the elevator once it
reaches its floor, press the correct button inside the elevator and
exit it once the the elevator arrives at the correct destination.
All of those actions are implemented as states in the simulation
(see figure 2). The state wait for cabin and wait in cabin
are dependant on the states of the elevator-agents. The person
watches the advertisements during the state wait in cabin. Its
also possible that the elevator breaks down. In this case, the
person leaves the elevator and tries to enter a different one.
Other states (e.g. person left the building) are not relevant for
this simulation.

wants to stay at the current floor

no cabin at floor

wants to stay at
— the current floor

Idle - { Wait for
Fvants to go to different floor\] f

exits at
Wait in
cabin

correct floor
wrong floor

start person
actions

Fig. 2. Each person has one of three possible states, which describe if the
person wants to remain on the current floor or not.

C. Elevator behaviour

The elevator-agents transport the person-agents to the dif-
ferent floors. To achieve this, they need a specific behaviour
defining how they move frome one floor to another and which
actions they have to take. They do not act by themselves, but
are controlled by the different floor- and elevator-buttons.

The easiest way would be to randomly move the elevators
through the building, but this does not simulate real elevator
systems. State-of-the-art elevators move in one direction and
visit necessary floors, until there are no more required floors
in the given direction. They are then turning around and move
in the other direction [13]. Each elevator in the simulation
adheres to this behaviour. Additionally, the elevators have to
coordinate each other, or every elevator would go to the same
floor after a floor button was pressed. The elevator system
requires a control unit that defines which elevator should go
to which floor to pick passengers up [14].

Besides this, the elevators in the simulation also have to
spend time opening and closing their doors, as well as take
time to move to a different floor. The elevator can also

send distress calls or break down, depending on the scenario.
Similar to the persons-agents, these actions are implemented
as states (see figure 3). The state machine of elevators is
mainly influenced by the actions of the person-agents, because
these agents make requests to move to different floors. They
influence every state of elevator-agents, with the exception
of the state outage. The state move is additionally affected
by the other elevator-agents in the simulation, as certain
floors can be skipped if different elevators are moving to the
requested floors already. Each elevator has a unique schedule
of advertisements. The commercials will not get displayed
while the elevator is waiting. They start once the elevator
begins moving to a different floor.

closing door
request from

different floor

start cabin start to close doors, finished closing
actions move back to ground level the door
moving
wait until
no request finished solved
. p reached
waiting wait until Diciecs roepseunmeoors, destination
repaired call behaviour floor

Wait for L
passengers

wait

Open
door

opening door

finished opening
the door

Fig. 3. Elevators are idling until they get a request from a floor. If they have
to move to a different floor, they cycle through different states until they have
reached their destination.

D. Communication with the scheduler

Each elevator in the simulation requires a schedule. These
schedules consist of an arbitrary number of advertisements,
that are given in a specific order. Once a schedule has been
uploaded to an elevator, it will keep displaying the advertise-
ments, until it is replaced by a new schedule.

The automatic scheduler generates the different schedules
on a daily basis. The different elevators take the newest
schedule via restful web services and update its advertisements
[15]. If the automatic scheduler is not able to generate the
schedules in time, the elevators keep displaying the old adver-
tisements. This is to prevent the system from not displaying
any advertisements.

Each elevator collects information regarding the
advertisement-playbacks. After a certain amount of elevator
rides have occurred or a day has passed, the information is
sent to the automatic scheduler.

The interval when schedules are created and updated can
be shortened significantly, if the system is tested with the
simulator. The simulation is able to generate the elevators
rides much faster, and therefore tests the different schedules
quicker than the real environment. For example, the scheduler
creates and sends the schedules at midnight, when using the
real system or a slowed down simulation. If the simulation
speed is increased by a factor of 4, then the scheduler has to
calculate schedules each 6 hours, instead of every 24 hours.

E. Test scenario

Two different test cases were implemented to test the
automatic scheduler together with the elevator simulation.
A model with 100 different elevators has been simulated.
The automatic scheduler calculated the necessary schedules
for these elevators using 20 advertisements with different
constraints (e.g. specific advertisements should only scheduled
on certain weekdays). This scenario has been simulated for one
week. Using the time lapse functionality of the simulation, this
scenario has been simulated with two different time settings.

In the first test case, the simulation slowed down to require
an entire week for the simulation, thus running in real-time
[16]. Thanks to this, the behaviour of the automatic scheduler
can be inspected in a setting that is as close to the real
environment as possible.

The simulation runs without delay in the second test case.
The interval, in which the automatic scheduler calculates the
advertisement schedules, had to be shortened significantly,
otherwise the scheduler would not be able to generate the
schedules on time. If the scheduler is too slow, the simulation
reuses the old advertisement schedules.

The resulting data of both runs are compared to see if there
are any significant differences. Estimations for the different
data sets are stated and matched with the results of the test
runs, to identify any problems regarding the validity of the
simulation. These data sets include the start- and end-time of
the generated elevator rides, to check if their data is reasonable
and if the elevator-agents where able to correctly simulate their
given behaviour. Data regarding the displayed advertisements
is also collected, to verify if the advertisements have been
presented in the order given by the schedule.

III. RESULTS

The results of the simulations have been collected in an
object-relational database. Several SQL queries have been ex-
ecuted to make comparison with different estimators possible,
and to verify how rational the data sets are.

Required time for elevator ride

A certain amount of time is necessary until a single elevator
ride has occurred. This required time also needs to be simu-
lated correctly, or the time when advertisements are displayed
during elevator rides would not be accurate. If this does not get
simulated properly, the simulator would create rides that can
not happen in the real environment, like a ride that only lasted
for one second, but displayed three advertisements lasting 10
seconds each during this time.

Different building types have been simulated, containing
a different number of floors, elevators and persons. Possible
building types are for example shopping centres, office build-
ings and apartment complexes. Depending on the settings of
the elevator-agents, the time that it takes for one elevator to
move from one floor to another should be between 10 and 30
seconds. If a ride takes less time, the elevator is too fast and
the simulation becomes unrealistic. The minimum ride times
are thus suitable values to consider when reviewing the data

Building types

Number of Rides

apartment complex (10 floors) —- 61.854
office building (10 floors) | —1 27.077
public building (6 floors) | 70.032
community building (5 floors) | E-E 12.256
industrial building (3 floors) | 12.247
shopping center (3 floors) | — 24.487
restaurant (2 floors) | — 4.639
private building (2 floors) | 161

o 1ID 20 30 40 50 60 70 80 S0 100

time in seconds

Fig. 4. The necessary times of an elevator movement heavily depend on the number of floors inside the building.

set. The maximum ride times can be considered as well, but
they mainly depend on the number of floors in the building. If
the building contains more floors, then the elevator rides that
can occur take accordingly more time.

The fastest ride over all generated rides was 7 seconds long.
This is 3 seconds below the estimation. This ride probably
occurred because a person stepped into a very fast elevator
and only moved a single floor up or down. All the necessary
actions defined by the state machine of the elevator-agent can
be simulated during these 7 seconds, but this result is not very
realistic. This problem can be solved by decreasing the speed
of the elevator-agents.

To evaluate the maximum elevator ride times in respect to
how many floors the building has, a box-plot diagram was
designed (see figure 4). According to the data, the maximum
time of an elevator ride increases with the number of floors
in the building. This matches with the previous assumption.
Elevator-agents seem to correctly consider the number of
floors in the building during the simulation. The maximum
ride times seem to be very high, but can be explained with
distress calls, which delay the elevator ride significantly.

A. Schedule usage

After receiving the schedules, the simulation application has
to properly distribute the different schedules to the elevators.
The advertisements have to be displayed in exactly the same
order, that was defined in the schedule.

The automatic scheduler prefers simple advertisements with
little requirements at the beginning. Over several days, the
scheduler generates more specialised schedules for each ele-
vator, using the data sent back from the elevator simulation
(e.g. number of displayed advertisements). For the test cases,
three simple advertisements are being scheduled together with
17 constrained ads. Constraints define certain criteria that need
to be considerer for scheduling. The branch of an advertise-
ment is a possible constraint, or that that the advertisement
has to be displayed at a specific time. The only constraint
that is considered for each advertisement is, that the same
advertisement should not be repeated several times in a row.

The first schedule should only consist of three projects, named
A, B and C. The scheduler should prefer these three projects,
as they don’t have any unique constraints defined. A first
fitting schedule might be in the order A-B-C-A-B-C-A-B-C-B.
This order would be suitable, as no advertisement is repeated
twice in a row. The second schedule should already use the
commercials with constraints during schedule generation.

After testing this behaviour, a small variation of the esti-
mated schedule was observed for the first schedule (see figure
5). The estimated and generated schedule are similar, but the
calculated schedule repeats the advertisement C two times
back-to-back. The simulation correctly displays and repeats
the given schedule.

Estimated Schedule:
[ale[c[a[s]c]a[e]c]s]

Schedule generated:
[a[e[cle[a[e[c]ale]c]

Displayed advertisements:

[ale]cle[alefc]alelci
L ElEel el e e
A EEEAERERER.

Fig. 5. The elevator simulation correctly incorporates the generated schedule
during the simulation.

The last generated schedule for the simulation should differ
for the most part compared to the first schedule. It should
mostly consist of advertisements with constraints. Making an
accurate estimation for this schedule is difficult, because many
factors of the simulation are taken into account during the
schedule generation, some of which are stochastic.

Figure 6 shows the result of the last run. As required, only
constrained advertisements have been scheduled. The elevator
in the simulation was also able to display and repeat the
schedule correctly. However, there is still room for improve-
ment. The schedule contains three D-advertisements in a row.

It would’ve been impossible to prevent a repetition with the
given number of advertisements, but a schedule like D-D-E-
D-D-E-D-F-D-G would’ve prevented a triple repetition, at the
cost of two double repetitions.

Schedule generated:
[o]e[o[o[o[e[o[¢[o]8]

Displayed advertisements:

[o[e[o]o[o]e[o[F[ofE
Lé{D|E|D|D|D|E|D|F|D|G}—‘
L9|[:|E|[J|[J|[:|E|[J|F|[:|G|...

Fig. 6. After collecting data from the simulator, the scheduler starts using
the constrained advertisements for scheduling.

All of these behaviours have been successfully observed in
both test cases. It didn’t matter if the simulation was slowed
down to real-time or was simulating as fast as possible. The
only difference was, that the interval of the automatic sched-
uler had to be adjusted, so that the scheduler would calculate
the schedules fast enough for the simulation application.

IV. CONCLUSION

Using an application to simulate certain scenarios, that are
otherwise too difficult or expensive to set-up, is a good way
to generate test data for a scheduling algorithm and software-
systems in general. Data can be generated much faster than
it would ever be possible in the real environment. The testing
of the scheduling algorithm can be improved, as it allows
the creation and calculation of much bigger problems than
usual. Simulations also enable to run the simulation at different
speeds, allowing to test a certain scenario over any given
duration. Because of this its possible to run the scheduler
in an environment, that is as close to the real environment
as possible. Thanks to this, problems that might arise when
a certain problem size is reached can be detected and fixed
sooner.

Simulations seem like a fitting way to test without using
a real system. By imitating the basic behaviours of the real
environment, simulations make it possible to test an appli-
cation without using the real system. Certain aspects can be
monitored and adjusted during the simulation, that can not be
inspected as easily in the real system [17]. Complete validity
of the simulation has yet to be confirmed by comparing data of
the real environment with data of a simulation using a model
of the real environment [18].

V. OUTLOOK

As a next step, the results of the simulator are intended to
be compared with the data created in the real environment.
To do this, a model that is very similar to the buildings,
that are currently showing advertisements using manually built
schedules, will be simulated. Then the data of the simulation
will be compared with the real data. Thanks to this, the

differences regarding the behaviour of the simulation and the
real system can be detected. Furthermore, the validity of the
simulation can be assessed and it can be verified if a simulation
application is a suitable substitute for testing a system.

The basic framework of the simulation application should
be improved, so that other kinds of models, and not only
elevator systems, can be simulated as well. Additional person
behaviours might be implemented, so that more types of
persons can be simulated, like children or elderly persons
[19]. The current system is loosely modelled after a state
machine approach, but the state machine template has not
been implemented. Further research will be done to asses how
effective simulations based on finite state machines are [20].

REFERENCES

[1] A. S. Jain and S. Meeran, Deterministic job-shop scheduling: Past,
present and future European Journal of Operational Research, 113,
390-343, 1999.

[2] T. A. Shimp and J. C. Andrews, Advertising Promotion, and Other
Aspects of Integrated Marketing Communications ~ ISBN-13: 978-
0324593600, 2013

[3] M. Ghallab, D. Nau and P. Traverso, Automated Planning and Acting
http://projects.laas.fr/planning/ last visited: Apr. 25,
2016

[4] J. A. Sokolowski and C. M. Banks, Principles of Modeling and Simula-
tion: A Multidisciplinary Approach ~ ISBN-13: 978-0470289433, 2009

[5] H. Stachowiak, Allgemeine Modelltheorie 1SBN-13: 978-3211811061,
1973

[6] F. E. Cellier and J. Greifeneder, Continuous System Modeling
13: 978-0387975023, 1991

[71 N. Matloff, Introduction to Discrete-Event Simulation and the SimPy
Language University of California, Davis, 2008

[8] S. Moss and P. Davidsson, Multi-Agent Based Simulation
978-3-540-44561-6, 2001

[9] A. Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts

ISBN-13: 978-0470233993, 2009

A. Shalyto, N. Shamgunov and G. Korneev, State Machine Design

Pattern Lane Department of Computer Science and Electrical En-

gineering, West Virginia University, 2008

1. Sakellariou, Agent Based Modelling and Simulation using State Ma-

chines Department of Applied Informatics, University of Macedonia,

2015

G. E. Newell, Strategies for Serving Peak Elevator Traffic

Transportation Studies, University of California, 1998

G. R. Strakosch and R. S. Caporale, The Vertical Transportation

Handbook ISBN-13: 978-0470404133, 2010

T. K. Khiang, M. Khalid and R. Yusof, Intelligent Elevator Control

by Ordinal Structure Fuzzy Logic Algorithm Universiti Teknologi

Malaysia, 1999

R. T. Fielding, Architectural Styles and the Design of Network-based

Software Architectures University of California, Irvine, 2000

J. Blanger, P. Venne and J.-N. Paquin, The What, Where and Why of

Real-Time Simulation ~ Opal-RT Technologies, 2010

M. McGarry, B. Bickell and G. Pelkey, A Case Study of the Use of

Actual Controls in Simulation Trainers Andritz Automation, 2012

M. S. Maris, Validation of Simulation Based Models: A Theoretical

Outlook Manipal Institute of Technology, India, 2006

S. Tuomas, J. Sorsa and M.-L. Siikonen Passenger Behaviour in Elevator

Simulation in Elevator Technology 14, 2004

I. Chiuchisan, A. D. Potorac and A. Graur, Finite State Machine Design

and VHDL Coding Techniques Universitatea “Stefan cel Mare” din

Suceava, Romania, 2010

ISBN-

ISBN-13:

(10]

(11]

[12] Institute of
[13]

[14]

[15]
[16]
(17]
(18]
[19]

[20]

